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ABSTRACT 

Here, we discuss statistical methods for efficient and accurate pressure readout from a 

recently fabricated, optics-based intraocular pressure (IOP) sensor [1]. Optics-based IOP sensing 

methods using microscale implants are appealing as they allow for direct pressure measurements, 

making them more accurate than the indirect techniques used in most traditional measurement 

approaches. The sensor considered in this work is primarily composed of a reflective membrane, 

which when implanted into the eye, can be used to obtain high-resolution reflection spectra when 

focused light is shone into the center of the eye. However, conventional pressure extraction 

methods for such sensors are computationally expensive, making real-time pressure readout 

impractical. In this work, we design statistical methods to extract pressure measurements from 

sensor reflection spectra and demonstrate that these techniques achieve similar accuracy to the 

best traditional methods (within ±1 mmHg) while improving on the computation time of these 

techniques by at least two orders of magnitude. These algorithms, combined with an optical 

sensing approach, can enable rapid, real-time, and accurate updates on a patient’s IOP, and thus 

aid clinical treatment of diseases such as glaucoma, in which IOP is a critical diagnostic 

measure. 

INTRODUCTION 

Glaucoma is the primary cause of irreversible blindness, but can be treated by taking 

measures to control a patient’s intraocular pressure (IOP) before their sight deteriorates past a 

critical point [2]. A detailed and accurate understanding of a patient’s IOP profile can help 

physicians personalize treatments based on individualized trends, similar to the treatment 

methods used for other chronic progressive diseases such as hypertension and diabetes [3]. 

Traditional IOP measurement techniques only provide indirect pressure measurements, making 

their accuracy susceptible to corneal biomechanics differences. Thus, implantable IOP sensors 

are attractive as they provide direct IOP measurements, and thus enable high accuracy, regular 

IOP readout to monitor the health of patients at risk of chronic glaucoma [1]. 



Currently, an optics-based, hand-held detector has been developed in the Choo lab at 

Caltech to non-invasively measure intraocular pressure using a microscale, implantable sensor 

[1]. This sensor enables remote and accurate IOP readout that has successfully tracked 

artificially-induced, short-term transient IOP elevations in anesthetized rabbits [1]. The sensing 

mechanism consists of a reflective membrane, which when implanted into the eye, can be used to 

obtain high-resolution reflection spectra when focused near-infrared (NIR) light is shone into the 

center of a patient’s eye [1]. These reflection spectra can be used to infer the degree of deflection 

of the sensor membrane using a standard Fabry-Perot optical cavity model, which can then be 

mapped to an ambient pressure reading using a solid mechanics model of the sensor membrane 

derived through its material properties. This method of combining the optical and mechanical 

properties of the sensing mechanism into an optomechanical model for pressure extraction is the 

standard method for determining IOP from optical signals [1]. However, this method is 

computationally expensive, making it impractical for use in real-time applications in which high 

time-resolution IOP signals are desirable for maximal clinical use. 

This work improves on the previous pressure extraction methods by using statistical methods 

to extract IOP from the reflection spectra obtained from an optics-based IOP sensor. Our results 

closely match traditional physics-based models in terms of pressure extraction error while 

significantly outperforming them in terms of real-time evaluation speed. This has the potential to 

help make optics-based IOP sensing more commercially viable. Rapid and accurate pressure 

extraction algorithms, combined with an optics-based sensing approach, can enable patients to 

regularly measure IOP with a simple handheld device or smartphone, facilitating remote 

diagnosis by clinicians. 

METHODS 

Experimental Setup and Data 

The optical spectra used for pressure extraction are collected using the experimental setup 

and sensor designed in [1]. Here, the sensor membrane is mounted in a controlled pressure 

chamber, in which the pressure can be precisely controlled between 0 and 40 mmHg using an 

open-tube manometer setup. This controlled pressure chamber is intended to be a representative 

model for the human eye, but one in which the ambient pressure, and thus simulated IOP, can be 

easily adjusted. Then, broadband NIR light from a tungsten bulb is shone into the center of the 

sensor membrane, with the resulting reflection spectra captured through a commercially 



available spectrometer. A brief summary of the setup used is shown in Figure 1 below. These 

reflection spectra are then fed into a variety of different algorithms to map these signals to a 

specific IOP readout. An example reflection spectrum collected from the sensor is shown in 

Figure 2 below. 

 

 

 
Figure 1 (left): Schematic diagram of experimental setup 
Figure 2 (right): Example reflection spectrum obtained from sensor at a given pressure after 
running it through a moving average filter. 
 

Using the experimental setup described, six datasets were collected of 15,000 optical 

spectra each, with each dataset consisting of spectra collected at a different ambient temperature 

between 30 and 37 degrees. Each collected spectra is paired with a reference pressure value, 

which can be used to evaluate the accuracy of any pressure extraction algorithm. These compiled 

datasets were used to test the various algorithms described in this work. 

Feature Extraction 

First, each collected reflection spectrum is run through a moving average filter for basic 

de-noising. Then, the two most prominent peak and two most prominent valley locations in 

wavelength space are found for each spectrum. Here, the prominence of each peak and valley is 

computed by determining how much each peak/valley stands out due to its intrinsic intensity and 

spacing relative to other peaks/valleys. Since the peak and valley locations were found to shift 

slightly in wavelength space at different pressures, the most prominent peak/valley locations 

were determined to be useful features we could extract from the collected reflection spectra. 

These features are identified in order to reduce the dimensionality of the pressure extraction 



process while ensuring accurate results. Thus, each of the six initial datasets were converted to 

new datasets, in which just the four characteristic features of each spectrum (location of two 

most prominent peaks, location of two most prominent valleys) were stored along with the 

corresponding reference pressure value for that spectrum. 

Pressure Extraction Algorithms 

We compare five pressure extraction algorithms in terms of their real-time evaluation 

speed and accuracy on our collected datasets. All models were run on a MacBook Pro (Retina, 

13-inch, Mid 2014, 2.6 GHz Intel Core i5 with 16GB of memory), and thus the computation 

times reported should be interpreted in this context. Each of these algorithms were designed to 

map the four most prominent peak/valley locations to a specific ambient pressure reading. Two 

of the algorithms discussed are physically-derived, while the other three are purely statistical, in 

which the function mapping peak/valley locations to a pressure value is essentially ‘learned’ 

through a parameterized model. All statistical models described below are trained on a randomly 

selected subset of the data consisting of 80% of the collected spectra (training set) and evaluated 

on the remaining 20% of the data (validation set). 

Physical Models 

I. Direct Mathematical Model: Here, a mechanical model of the sensor membrane that 

maps a specific ambient pressure to a membrane deflection [1], in addition to a 

theoretical mapping between the peak/valley locations of the optical reflection spectra 

and a given sensor membrane deflection [1] are used. When combined, these give a direct 

mapping between the peak/valley locations of each optical spectrum and the IOP. 

II. Optomechanical (Conventional) Model: This is the most common way to map reflection 

spectra from physical membranes to a measure of membrane deflection, such as the 

ambient pressure of the membrane, which is the IOP for the sensor membrane discussed 

in this work [1]. Here, a mechanical model of the sensor membrane is used to map a 

specific ambient pressure to a membrane deflection [1]. Then, this membrane deflection 

is used to generate theoretical reflection spectra using a standard Fabry-Perot optical 

cavity model. The peak/valley locations in these theoretical spectra are then 

systematically matched with the peak/valley locations in the collected experimental 

spectra to extract a pressure value corresponding to any given experimental spectra. This 

optomechanical model is described in more detail in [1].  



Statistical Methods 

I. Fully Connected Neural Network (NN Model): A fully connected neural network is built 

using Keras, a wrapper around the Python TensorFlow library. The network designed has 

two layers, each with 8 hidden units, in addition to two 10% dropout layers. A mean 

squared error loss function is used along with the Adam optimizer and ReLU activation. 

All inputs to the model are normalized to have mean 0, standard deviation 1 for optimal 

performance, with the neural network output converted back to the original scale before it 

is reported. 

II. Support Vector Machine (SVM Model): A support vector machine for regression was 

built using the Python scikit-learn library. A radial basis function kernel was used with a 

regularization penalty parameter of 0.5 and an epsilon tube of width 0.2. 

III. Ensemble of Bagged Decision Trees (Tree-Based Model): A bagging regressor was 

implemented using the Python scikit-learn library. The base estimator used was a 

decision tree, while the maximum number of samples used to train each base estimator 

was set to be 70% of the total amount of training samples in the training set as a 

regularization measure. The number of estimators used in the ensemble was set to 100. 

RESULTS 

Now we compare the models described above in terms of their pressure extraction error. 

Pressure extraction error is measured in terms of the absolute value of the difference between 

each model’s pressure output on a set of spectra and the reference pressure values for those 

spectra in the dataset. For all statistical models, the pressure extraction error is of course 

evaluated out of sample. Furthermore, all models are also compared based on their per-sample 

evaluation time in addition to the spread of their average pressure extraction errors over different 

temperatures. The spread of the pressure extraction residuals (predicted pressure – actual 

pressure) for each of the five methods are compared in Figure 3 below.  



 
Figure 3: Spread of the residuals of the computed pressure by each model and the reference 
pressure associated with each spectrum. Here, we see that the conventional model, SVM, and 
tree-based model all have very low errors in general, and are nearly always accurate to within  
±	1 mmHg while the other models have much larger error spreads. 
 

Here, we see that the pressure extraction residuals for the direct mathematical model are 

actually very high, which may indicate that the theoretical mapping it uses does not handle the 

degree of noise in the collected data very well. Thus, we observe a spread of errors of nearly ±2 

mmHg. However, the error spread of the other models is relatively lower, especially the SVM, 

conventional model, and tree-based model. Interestingly, the spread of errors for the tree-based 

model is actually lower than that of either of the physics-based models, indicating that statistical 

models can actually outperform deterministic models from an accuracy standpoint in this 

application.  

The spread of the per-sample evaluation time for each of the methods is compared in 

Figure 4 below.  

 

 



 
Figure 4: Spread of the per-sample evaluation time of each model. Here, we see that the 
conventional model has a very high per-sample evaluation time, with a great degree of variation 
between different spectra. However, the per-sample evaluation time for the other models has 
very little variation, and the mathematical model, SVM, and NN Model have particularly low 
per-sample evaluation times. 
 

We see that the per-sample evaluation time and its spread are significantly higher for the 

conventional model than for any of the other models. This makes sense since the process of 

matching the experimental peak/valley locations to theoretical spectra is quite computationally 

expensive. Furthermore, the tree-based model has the next highest per-sample evaluation time, 

which makes sense since this model involves training an ensemble of 100 decision trees. The 

other models, however, have very low per-sample evaluation time (on the order of a few 100 

microseconds), making them well-suited for real-time pressure readout applications. 

Finally, the spread of the average pressure extraction error of each method over different 

temperatures is compared in Figure 5 below.  



 
Figure 5: Average pressure extraction error is computed for each model on each of the 6 

temperature datasets. Then, the spread of the average pressure extraction error is shown for 

each model over the 6 different temperatures. 

 

We see that the mathematical model is very susceptible to temperature variation as the 

spread of the average pressure extraction error on different temperature datasets is much higher 

for the mathematical model than for the other models. Particularly, the tree-based model has very 

low variation in performance for different temperatures, indicating that it is particularly robust 

compared to the other models. 

Ultimately, from the comparison performed above, we see that the SVM model has the 

lowest per-sample evaluation time, low pressure extraction error, and is robust to temperature 

changes making it the best model to use for real-time pressure readout applications. However, 

the tree-based model is also attractive if one is willing to sacrifice some time-resolution in the 

readout process, as although it is substantially slower than the SVM model, it is also the most 

accurate model explored in this work and the most robust to temperature changes. It is interesting 

to note that the most successful models were the statistical ones. Of the two physically-derived 

models, the mathematical model has very high error and low computation time, while the 

conventional model has relatively low error but very high computation time. 

 

 



DISCUSSION 

This work presents statistical methods that enable rapid and accurate pressure readout 

from a recently fabricated, optics-based, intraocular pressure (IOP) sensor. These methods are 

shown to improve the computation time of the pressure readout process while achieving similar 

pressure extraction error to existing, physics-based methods. Particularly, a 2-layer fully 

connected neural network, an ensemble of bagged decision trees (tree-based model), and an 

SVM are compared to standard optomechanical and direct mathematical models in terms of both 

accuracy and computation time. It is found that the ensemble of bagged decision trees, SVM, and 

optomechanical models all achieve sufficiently low out of sample error (less than ±1 mmHg). 

Furthermore, the evaluation time of the SVM model is typically around 100 𝜇𝑠, making this 

model particularly attractive for use in a real-time pressure readout application since it 

outperforms all other tested models in terms of computation time, and has only slightly higher 

average absolute out of sample error (0.4 mmHg) compared to the tree-based (0.09 mmHg) and 

optomechanical (0.12 mmHg) models.  

Furthermore, we also investigate how robust the five algorithms studied are to changes in 

the ambient temperature of the eye. It is found that the tree-based model is the least affected by 

data collected at different temperatures, with nearly no deviation in the average pressure 

extraction error for different temperature datasets. The SVM model is close behind in this regard, 

and both the SVM and tree-based models have smaller average error spread for different 

temperature datasets than either of the physically-derived models. Thus, the SVM and tree-based 

models achieve comparable readout accuracy to the best physically-derived method investigated 

here (the tree-based model’s accuracy was actually better) while having significantly lower 

computation time and lower variation in performance with respect to ambient temperature.  

We demonstrate that real-time, accurate IOP readout systems can significantly benefit 

from statistical methods from both an accuracy and speed standpoint. The evaluation time 

improvement afforded by these methods enables acquisition of high-resolution IOP signals from 

patients, improving a doctor’s ability to effectively diagnose patients with diseases such as 

glaucoma, in which IOP is the primary adjustable risk factor. Future work could involve further 

tuning model parameters to improve results, trying different model architectures, or studying 

ways to infer further clinical information from the sensor reflection spectra beyond just IOP. 

 



REFERENCES 

[1] Jeong Oen Lee, Haeri Park, Juan Du, Ashwin Balakrishna, Oliver Chen, David Stretavan, 

Hyuck Choo. A Microscale Optical Implant for Continuous In-vivo Monitoring of Intraocular 

Pressure. Microsystems & Nanoengineering 2017. 

[2] Quigley HA, Broman AT. The number of people with glaucoma worldwide in 2010 and 

2020. The British Journal of Ophthalmology 2006; 90: 262–267. 

[3] Hughes E, Spry P, Diamond J. 24-hour monitoring of intraocular pressure in glaucoma 

management: A retrospective review. Journal of glaucoma 2003; 12: 232–236. 


