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Abstract: Learning robust robot grasping policies is an important step for robotics
to be viable for commercial automation, such as household assistance, warehousing,
and manufacturing. There has been significant prior work on data-driven algorithms
for learning general-purpose grasping policies, but these policies can consistently
fail to grasp certain objects which are significantly out of the distribution of objects
seen during training or which have very few high quality grasps. For such objects,
we study strategies for efficient grasp exploration to increase grasp reliability. Pre-
cisely, we formalize the problem of efficiently exploring grasps on an unknown
polyhedral object through sequential interaction as a Markov Decision Process in a
setting where a camera can be used to (1) distinguish stable poses and (2) deter-
mine grasp success/failure. We then present a bandit-style algorithm, Exploratory
Grasping, which leverages the structure of the grasp exploration problem to rapidly
find high performing grasps on new objects through online interaction. We provide
vanishing regret guarantees for Exploratory Grasping under certain assumptions on
the structure of the grasp exploration problem. Results suggest that Exploratory
Grasping can significantly outperform both general-purpose grasping pipelines and
two other online learning algorithms and achieves performance near that of the
optimal policy on both the Dex-Net adversarial and EGAD! object datasets.

Keywords: Grasping, Online Learning

1 Introduction

Robot grasping systems have a broad array of applications such as warehousing, assistive robotics,
and household automation [1, 2, 3, 4]. There has been significant prior work in geometric algorithms
for defining grasping policies [5, 6, 7, 8], but these methods can often be difficult to apply when
object geometry is unknown. These challenges have motivated a large array of recent work on
utilizing large-scale datasets of previously attempted grasps both in simulation [4, 9, 1, 10] and in
physical experiments [11, 3, 1, 12] to learn data-driven general-purpose grasping policies which can
generalize to objects of varying geometries. To further enable generalization, there has also been
work on applying reinforcement learning to learn grasping policies [2, 3, 13, 14]. However, while
these techniques have shown significant success in practice, their generality comes at a cost: a single
policy which aims to grasp every object may fail to generalize to certain objects [15, 16].

To address this challenge, we study the problem of online grasp exploration to systematically explore
sampled grasps on an object to discover robust and stable grasps on a given object with unknown
geometry. Specifically, we study a new setting in which a robot is tasked with interacting with an
unknown polyhedral object so that it can reliably grasp the object in the future. To this end, we
aim to design an algorithm which enables systematic and efficient grasp exploration on objects with
sparse grasps and adversarial geometries, which can cause persistent failures in general-purpose
grasping systems [16, 15]. The intuition is that while general-purpose grasping policies can be
broadly applied to a large set of objects, there is still a large class of objects that cause these
systems to struggle [15, 16]. This motivates developing algorithms for grasp exploration to learn
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per-object policies for such objects to explore a large set of possible grasps without the burden of
generalization to other objects. Then, when these difficult-to-grasp objects are encountered, the
resulting object-specific policies can be deployed instead of a general-purpose grasping policy.

We formulate the grasp exploration problem as a Markov Decision Process (MDP) and study how
parameters of this MDP affect the fundamental difficulty of grasp exploration. We then present
an efficient algorithm which leverages the structure of the grasping problem to efficiently explore
grasps across different object stable poses and can quickly learn robust grasping policies even for
objects that general-purpose grasping policies routinely fail to grasp. We formalize a new problem
setting in which an agent seeks to explore grasps across different stable poses of an object by
repeatedly attempting grasps on the object and dropping it when a grasp is successful to randomize
its stable pose and provide efficient algorithms for grasp exploration in this setting. This paper
contributes (1) a novel formulation of the grasp exploration problem as an MDP and intuitive
parameter-dependent performance bounds on a family of existing tabular reinforcement learning
algorithms for grasp exploration, (2) an efficient bandit-inspired algorithm, Exploratory Grasping, for
grasp exploration in this MDP with associated no-regret guarantees, and (3) experiments suggesting
that Exploratory Grasping is able to significantly outperform baseline algorithms which explore via
tabular reinforcement learning or select actions greedily with respect to general-purpose grasping
policies on both the Dex-Net adversarial and EGAD! object datasets.

2 Related Work

Work in analytic robot grasping assumes that object geometry and pose are known precisely and
leverages this knowledge to motivate geometric algorithms for grasp planning [5, 7, 8, 6]. Recently,
learning-based algorithms have been used to develop general-purpose algorithms for planning robust
grasps on a wide range of objects of varying geometries with data-driven strategies [14, 4, 11, 10, 1,
17, 18, 9] and online exploration through reinforcement learning [2, 3]. While the latter approaches
have been very effective in learning end-to-end policies for grasp planning from visual input, these
policies can consistently fail on certain objects [15, 16]. In this work, we study the problem of
systematic online grasp exploration across different stable poses of specific objects. Thus, in contrast
to prior work which attempts to learn a single policy to grasp a wide range of objects, we develop an
exploration strategy that can rapidly discover high-quality grasps on specific objects.

There have also been several papers that use a multi-armed bandit framework for online grasp
exploration [19, 20, 21, 22, 23, 24, 25]. In contrast to these works, we consider a formulation where
the robot must learn grasps across all poses of the object without human supervision. Laskey et al.
[20] consider the setting where some prior geometric knowledge is known, but present an algorithm
which is limited to 2D objects and cannot operate directly on visual inputs. Li et al. [22] and Oberlin
and Tellex [21] relax these assumptions by exploring grasps in one fixed stable pose of a 3D object
with RGB or depth observations. We extend these ideas by repeatedly dropping the object and
exploring grasps in all encountered stable poses. Thus, Exploratory Grasping naturally explores
grasps over the distribution of likely stable poses [26], yielding a robust policy which can reliably
grasp the object when randomly dropped or placed in front of the robot. Additionally, we provide
formal guarantees establishing asymptotic convergence of Exploratory Grasping to an oracle policy
which knows the best quality grasp in each object stable pose in advance.

A key requirement for successful exploration of grasps on an object is discovering the object’s resting
stable poses, since the object will necessarily be in one of these poses when a grasp is planned. There
has been significant prior work on orienting parts into specific stable poses through a series of parallel
jaw gripper movements [27], toppling actions [28], and squeezing actions [29]. However, these
approaches require knowledge of an object’s geometry apriori to plan motions to achieve specific
stable poses. When an object’s geometry is not known, but assumed to be polyhedral, prior work [26]
has established that repeatedly dropping the object from a known initial distribution of poses onto a
flat workspace results in an a stationary distribution over stable poses. Thus, this dropping procedure
provides a convenient method to explore grasps in new stable poses of an object. We leverage this
insight to (1) formulate the grasp exploration problem for an unknown object and (2) develop a grasp
exploration algorithm which can discover high-quality grasps across different object stable poses.

3 Grasp Exploration Problem Formulation

Given a single unknown polyhedral object on a planar workspace, the objective is to learn a grasping
policy that maximizes the likelihood of grasp success over stable poses of the object [26, 30]. We for-
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mulate the grasp exploration problem as a Markov Decision Process (Section 3.1), define assumptions
on the environment (Section 3.2) and formulate the policy learning objective (Section 3.3).

3.1 Grasp Exploration as an MDP

We consider exploring grasps on an unknown, rigid, polyhedral object O which rests in one of a
finite set of N distinguishable stable poses with associated drop probabilities {�s}

N

s=1. We study
polyhedral objects since they admit a finite number of stable resting poses, but assume that the robot
does not initially know any of these stable poses or the number of stable poses N . Note that any object
for which a triangular mesh provides a high fidelity model can be well-modeled as polyhedral [31].
The robot must discover new stable poses from experience by attempting grasps on the object in its
current stable pose and re-dropping the object when grasps are successful. We assume an overhead
digital camera that cannot reliably determine the 3D shape of the object, but can be used to recognize
distinguishable 3D poses by performing planar translations and rotations of the image into a canonical
orientation and translation. We also assume that the camera can be used after each grasp attempt to
determine if the grasp is successful after the gripper is moved out of the camera’s field of the view.

We formulate this problem as a Markov decision process (MDP) [32] by defining a grasp MDP,
M = (S,A, P,R), as follows:

1. State: We define a one-to-many mapping from the full set of object stable poses ⌃ to the set of
overhead point clouds I that are scale-invariant, translation-invariant, and rotationally-invariant
about the vertical axis. Then, we define the state space as the set of distinguishable stable poses
S. We define S as the set of equivalence classes within ⌃, where two poses are equivalent if
they map to the same set of overhead point clouds I . We assume the point cloud I is obtained
from a depth image observation o 2 R+

H⇥W
from an overhead camera with known intrinsics.

2. Grasp Actions: We define a set As of K grasp actions, such as parallel-jaw or suction grasps,
in each stable pose s 2 S of the object. The K grasps are sampled from the depth image
observation for each stable pose as in Mahler et al. [33]. The full action space is the union of
the actions available at each pose: A =

S
s2S

As.

3. Transition Function: An unknown transition probability distribution P (s0 | s, a) defining
the probability of the object transitioning to stable pose s0 if grasp action a is executed in stable
pose s. If a is a successful grasp, then the object is dropped into the workspace to sample a
new stable pose s

0 based on unknown drop probabilities {�s}
N

s=1, while if a is a failed grasp,
the object topples into some new pose s

0 with unknown probability �s,s0 .
4. Reward Function: Rewards are drawn from a Bernoulli distribution with unknown parameter

�s,a: R(s, a) ⇠ Ber(�s,a) for a 2 As. R(s, a) = 1 if executing a in stable pose s results in
the object being successfully grasped and lifted, and 0 otherwise.

3.2 Assumptions

To study policy learning in a grasp MDP, we first establish assumptions on the system dynamics
to ensure that all poses are reachable and which describe how the object pose can evolve when the
object is (1) dropped or (2) when a grasp is attempted.
Assumption 3.1. Grasp Dynamics: If a grasp succeeds, we assume that the robot can randomize
the pose of the object before dropping it to sample subsequent stable poses from the associated
unknown stable pose drop probabilities {�s}

N

s=1 for O. If a grasp fails, we assume that the object’s
pose will either remain unchanged or topple into some other pose s

0 with unknown probability �s,s0 .
Assumption 3.2. Drop Dynamics: The categorical distribution over stable poses defined by drop
probabilities {�s}

N

s=1 is a stationary distribution that is independent of prior actions and poses when
O is dropped from a fixed height with its orientation randomized as in Goldberg et al. [26].
Assumption 3.3. Irreducibility: We assume that there exists a policy ⇡ such that the Markov chain
over stable poses induced by executing ⇡ in grasp MDP M is irreducible, and thus can reach all
stable poses with nonzero probability for any initialization.

Note that Assumption 3.3 is satisfied if, for all poses s 2 S, �s > 0 and there exists a grasp with
success probability ✏ > 0. As a result, we assume that these conditions hold for analysis. However,
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since object toppling is also possible, note that these conditions are sufficient but not necessary for
ensuring irreducibility.

3.3 Learning Objective

The objective is to learn a policy ⇡ : S ! A that maximizes the expected average reward over
an infinite time horizon under the state distribution induced by ⇡. Let ⌧ = {(st,⇡(st))}Tt=1 be
a trajectory of all states and actions when executing policy ⇡ over some time horizon T and let
r(⌧) =

P
T

t=1 r(st,⇡(st)) be the sum of rewards for all states and actions in ⌧ , and let p(⌧ |⇡) be the
trajectory distribution induced by policy ⇡. Then the expected average reward obtained from policy ⇡

in grasp MDP M is given as:

J(M,⇡, T ) =
1

T
E⌧⇠p(⌧ |⇡) [r(⌧)] (1)

The objective is to find the policy which maximizes expected reward over an infinite time horizon:

⇡
⇤ = argmax

⇡

lim
T!1

J(M,⇡, T ) (2)

4 Reinforcement Learning for Grasp MDPs

We first study the performance of reinforcement learning algorithms for grasp exploration and
leverage the structure of the grasp MDP described in Section 3 to establish a bound on the cumulative
regret for a variety of existing tabular reinforcement learning algorithms when applied to grasp MDPs.
See Section A of the supplementary material for all proofs.

4.1 Analyzing Grasp MDPs

A common metric with which to measure policy performance in online-learning settings is regret,
which has been analyzed in the reinforcement learning setting by a variety of prior work [34, 35, 36,
37]. Intuitively, regret quantifies the difference in accumulated reward within T timesteps between a
given policy ⇡ and optimal infinite horizon policy ⇡

⇤ for MDP M. More precisely, we define average
regret based on the definition in [34]:

Regret(M,⇡, T ) = max
⇡0

h
lim

T!1
J(M,⇡

0
, T )
i
� J(M,⇡, T ) (3)

Recent theoretical work [34] on reinforcement learning for tabular MDPs yielded algorithms which
can attain average regret proportional to the diameter of the MDP, a measure of the furthest distance
between pairs of states under an appropriate policy. However, for general MDPs, this diameter can be
arbitrarily large, making these regret bounds difficult to interpret in practical settings. We leverage
the structure of grasp MDPs to derive an intuitive upper bound on the MDP diameter, which helps
precisely quantify the difficulty of grasp exploration based on the parameters of the grasp MDP.

We begin by defining the Markov chain over S induced by a stationary deterministic policy ⇡.
Definition 4.1. Pose Evolution under ⇡: Given stationary policy ⇡, the transitions between pairs
of states in M is defined by a Markov chain. Precisely, the transition probabilities under ⇡, denoted
by P

⇡ where P
⇡[s, s0] = P (s0 | s, a = ⇡(s)), are given as follows:

P
⇡[s, s0] = �s,⇡(s)�s0 + (1� �s,⇡s(s))�s,s0 (4)

Given this Markov Chain over poses for a given policy ⇡, we can now analyze the diameter of the
grasp MDP, denoted D(M), by considering the hitting time between stable poses in M as defined
in [38]. Note that by Assumption 3.3, the Markov chain corresponding to P

⇡ is irreducible, and we
can compute the hitting time between any pair of states in closed form [38].
Definition 4.2. Let T⇡

s!s0 denote the hitting time between states s and s
0 under policy ⇡ under the

Markov chain defined in Definition 4.1. Then the diameter of M is defined as follows [34]:

D(M) = max
s 6=s0

min
⇡

E [T⇡

s!s0 ] (5)

4



Intuitively, D(M) measures the temporal distance between the furthest apart states in an MDP
under the policy which minimizes this distance. We now leverage the structure of the grasp MDP to
establish an upper bound on D(M).
Lemma 4.1. The diameter of the grasp MDP M can be bounded above as follows:

D(M) 
1

✏�1
, (6)

where ✏ is a lower bound on the success probability of the highest quality grasp over all stable poses

and �1 is the drop probability for the least likely stable pose.

Lemma 4.1 captures the intuition that the diameter of the MDP should be large if the best grasp in
each stable pose has a low success probability (✏ is small), or if there exists a stable pose with very
low drop probability (�1 is small).

Now we can establish regret bounds for a variety of tabular reinforcement learning algorithms when
applied to M by combining diameter dependent regret bounds from prior work and the bound on
grasp MDP diameter established in Lemma 4.1.
Theorem 4.1. UCRL2 [34], KL-UCRL [36] and PSRL [39] admit average regret bounded above as

follows for any grasp MDP M:

Regret(M,⇡, T ) ⇠ Õ

 
N

✏�1

r
K

T

!
, (7)

while UCRLV [35] admits the following average regret bound for grasp MDP M.

Regret(M,⇡, T ) ⇠ Õ

 r
NK

✏�1T

!
, (8)

with N , K, T , ✏ and �1 defined as in Section 3.

While the diameter can be uninterpretable and difficult to directly compute or bound for general
MDPs [34], Theorem 4.1 leverages the specific structure of grasp MDPs to relate the accumulated
regret of common RL algorithms to intuitive parameters of the grasp MDP. This result also serves to
shed light on the fundamental difficulty of grasp exploration in the context of reinforcement learning.

5 A Bandit-Style Algorithm for Efficient Learning in Grasp MDPs

One interesting feature of the grasp MDP M is that most objects have a small, finite set of stable
poses [26]. This motivates learning a set of N bandit policies, each of which explore their grasps in a
particular object stable pose. However, the grasp exploration problem in each pose is not necessarily
decoupled. For example, there may exist a pose s with no available high quality grasps but a high
likelihood of a failed grasp causing the object to topple into another pose with high quality grasps.
Then, the optimal policy may deliberately fail to grasp the object in pose s in order to obtain access
to grasps in the more favorable stable pose, leading it to avoid grasp exploration in poses without
high quality grasps. To avoid this behavior, we introduce Assumption 5.1.
Assumption 5.1. We assume that �s,s0  ✏�s0 for all s 6= s

0 where �s,s0 is the probability of toppling
into pose s0 given a failed grasp in pose s, ✏ is a lower bound on the success probability of the highest
quality grasp over all stable poses, and �s0 is the drop probability of pose s

0.

Assumption 5.1 ensures that there exists a grasp in all stable poses s such that the probability of
transitioning to new pose s

0 via a grasp attempt is higher than that of toppling from pose s to pose s
0.

Given this assumption, the optimal grasp exploration policy in M reduces to selecting the grasp with
highest success probability in each encountered pose, as this policy maximizes both reward at the
current timestep and exploration of other stable poses when the object is re-dropped. In other words,
the global optimal policy is the greedy policy. Given this structure, we can view the grasp exploration
problem as N independent multi-armed bandit problems corresponding to grasp exploration in each
pose. However, although grasp exploration can be performed independently in each pose, the success
of a grasp exploration policy in one pose affects the time available to explore grasps in another pose.

We propose a simple and intuitive grasp exploration algorithm, Exploratory Grasping: maintain the
parameters of N independent bandit policies (⇡B

s
)N
s=1 for ⇡B

s
: s ! As where ⇡

B
s

is only active in
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stable pose s. We let ⇡B denote the meta policy induced by executing bandit policy ⇡
B
s

in pose s and
assume that ⇡B

s
is learned by running a no-regret online learning algorithm B for grasp exploration in

pose s. Some examples of no-regret algorithms for the stochastic multi-armed bandit problem include
the UCB-1 algorithm [40] and Thompson Sampling [41]. We then formulate a new notion of regret
capturing the gap between ⇡

B and the optimal policy on their respective distributions, and show that
Exploratory Grasping achieves vanishing average regret despite the interdependence between pose
exploration times.

Let pB
T

denote the distribution of poses seen under the sequence of policies ⇡B
1:T at each round of

learning up to time T and let p⇤
T

denote the distribution of poses seen when executing the optimal
policy (⇡⇤) in M up to time T . We define the average regret accrued by Exploratory Grasping in
grasp MDP M after T rounds as the difference in accumulated reward of the optimal policy on pose
distribution p

⇤
T

and the accumulated reward of ⇡B on pose distribution p
B
T

.
Definition 5.1. The average regret accumulated by running B in each stable pose is defined as the
difference between the average regret for each pose visited by the optimal policy ⇡

⇤ weighted by the
probability of it visiting each pose and the corresponding quantity for the executed policy ⇡

B:

E
⇥
R

B(T )
⇤
=

NX

s=1

p
⇤
T
(s)E

2

4 1

T ⇤
s

T
⇤
sX

t=1

R(s,⇡⇤(s))

3

5�

NX

s=1

p
B
T
(s)E

2

4 1

TB
s

T
B
sX

t=1

R(s,⇡B
t
(s))

3

5

where T
⇤
s

is the time spent by the optimal policy in pose s and T
B
s

is the time spent by ⇡
B in pose s.

In Section A of the supplementary material, we show that the average regret as defined in Definition 5.1
vanishes to 0 in the limit as T ! 1 as stated in Theorem 5.1.
Theorem 5.1. The average regret accrued by Exploratory Grasping, when using any no-regret bandit

algorithm B for grasp exploration in each encountered stable pose, vanishes in the limit:

lim
T!1

E
⇥
R

B(T )
⇤
= 0

This result leverages the precise structure of the grasp MDP, namely that the optimal policy is the
greedy policy, to provide sublinear regret guarantees for Exploratory Grasping, which executes any
standard no-regret online learning algorithm for grasp exploration in each stable pose.

6 Simulation Experiments

In simulation experiments, we study three questions: (1) Does Exploratory Grasping facilitate grasp
exploration on objects for which general-purpose grasping policies, such as Dex-Net 4.0 [4] and GG-
CNN [1], perform poorly? (2) Does learning separate policies for each stable pose as in Exploratory
Grasping accelerate grasp exploration? (3) Can Exploratory Grasping be applied in realistic settings
in which objects may topple due to failed grasps? Unfortunately due to the pandemic, we were
unable to run physical experiments for the paper. However, since Exploratory Grasping samples
grasps on image based observations of the object and is evaluated in a similar simulation environment
as used in Mahler et al. [42], which transferred learned grasping policies to physical bin picking
environments, we expect that Exploratory Grasping can likely be extended to grasp exploration in the
real world.

6.1 Experimental Setup

To evaluate each policy, we choose 7 objects from the set of Dex-Net 2.0 adversarial objects [33]
as well as 39 evaluation objects from the EGAD! dataset [43]. We use these objects in experiments
because general-purpose grasping policies for parallel-jaw grippers (Dex-Net 4.0 and GG-CNN)
perform poorly on them, yet they contain high-quality grasps in multiple poses. We sample a set of
K parallel-jaw grasps on the image observation of pose s of each object as in [33], and calculate the
ground-truth quality of each grasp, �s,a, using a wrench resistance metric that measures the ability
of the grasp to resist gravity [42]. We remove poses that have no grasps with nonzero ground-truth
quality and renormalize the stable pose distribution. Then, we randomize the initial pose of each
object and execute Exploratory Grasping and baselines, sampling rewards from Ber(�s,a). If the grasp
succeeds, we randomize the pose, choosing a stable pose according to the stable pose distribution
of the object. Otherwise, we leave the object in the same stable pose. We rollout each policy for 10
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rollouts of 10 trials, where new grasps are sampled for each trial and each rollout evaluates the policy
over 10,000 timesteps of grasp exploration. Since there is stochasticity in both the grasp sampling
and the policies themselves, we average policy performance across the 10 rollouts and 10 trials. In
addition, we smooth policy performance across a sliding window of 20 timesteps and report average
reward for each timestep.

6.2 Policies

We compare 3 variants of Exploratory Grasping against 3 baselines to evaluate whether Exploratory
Grasping is able to (1) substantially outperform general-purpose grasping policies [4] on challenging
objects and (2) learn more efficiently than other online learning algorithms which update a grasp
quality convolutional network (GQCNN) online or explore grasps via reinforcement learning. We
also instantiate Exploratory Grasping with different algorithms for B to study how this choice affects
grasp exploration efficiency and implement an oracle baseline to study whether Exploratory Grasping
is able to converge to the optimal policy. We compare the following baselines and Bandit Grasping
variants: GQCNN, which selects grasps greedily with respect to the Grasp Quality Convolutional
Network from Dex-Net 4.0 [4] with probability 0.95 and selects a grasp uniformly at random with
probability 0.05, GQCNNFT, which additionally fine tunes the GQCNN policy online from agent
experience, an implementation of UCRL2 from [44], a tabular RL algorithm discussed in Section 4,
and instantiations of Exploratory Grasping with the UCB-1 algorithm [40] (Exploratory Grasping

(UCB)), Thompson sampling (Exploratory Grasping (TS)) with a uniform Beta distribution prior,
and Thompson sampling with a GQCNN prior of strength 5 (Exploratory Grasping (TS-5)) as
in [22]. Finally, we implement an oracle baseline that chooses grasps with the best ground-truth
metric at each timestep to establish an upper bound on performance.

6.3 Policy Learning without Toppling

We first evaluate the above baselines and Exploratory Grasping variants in a setting in which toppling
is not possible (�s,s0 = 0, 8s 6= s). This exacerbates the difficulty of grasp exploration since an
object must be successfully grasped in a given pose for policies to be able to explore grasps in other
poses. As shown in Figure 1, the GQCNN policy typically performs very poorly, achieving an average
reward of less than 0.1 per timestep. While the online learning policies also start poorly, they quickly
improve, and Exploratory Grasping (TS) eventually converges to the optimal policy. We also find
that Exploratory Grasping (TS-5), which leverages GQCNN as a prior using the method presented
in [22], further speeds convergence to the optimal policy. This result is promising, as it suggests
that the exploration strategy in Exploratory Grasping can be flexibly combined with general-purpose
grasping policies to significantly accelerate grasp exploration on unknown objects. We find that
the GQCNNFT policy performs very poorly even though it continues to update the weights of the
network online with the results of each grasp attempt and samples a random grasp with probability
0.05, which aids exploration. We hypothesize that this is due to the initial poor performance of
GQCNN—since the vast majority of fine-tuning grasps attain zero reward, the network is unable
to explore enough high-quality grasps on the object. Overall, these results suggest that Exploratory
Grasping can greatly increase grasp success rates on objects for which GQCNN performs poorly.

We also find that Exploratory Grasping policies greatly outperform the tabular RL policy UCRL2 by
leveraging the structure of the grasp MDP. Both the UCB and Thompson sampling implementations
maintain separate policies in each pose, thereby leveraging the fact that the optimal policy at each
timestep is the greedy policy. This allows the Exploratory Grasping policies to not waste timesteps
exploring the possible transitions to other states with low rewards. Thompson sampling additionally
leverages the fact that the rewards are distributed as Bernoulli random variables, which may explain
the significant performance gap between the Thompson sampling and UCB implementations. Thus,
the Exploratory Grasping policies quickly learn to choose high-quality grasps in each pose and
transition quickly to new, unexplored poses.

We also perform sensitivity analysis of Exploratory Grasping to the grasp MDP parameters ✏ and �1

and find that Exploratory Grasping quickly converges to the optimal policy unless ✏ or �1 is low. In
particular, we find that ✏ has an outsized effect on performance, which is intuitive given that ✏ affects
the ability of Exploratory Grasping to both achieve immediate grasp successes and explore new poses,
while �1 only influences the latter. See Section C of the supplementary material for details.
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Figure 1: Simulation Experiments: Performance of each policy across the vase, pawn and pipe objects from the
Dex-Net 2.0 adversarial object set [33] (first three columns), as well as aggregated performance over the 7 Dex-
Net objects (fourth column) and the 39 EGAD! objects (fifth column). We report the number of distinguishable
stable poses (S) for each object, as well as its ✏ (ground truth value for the lowest quality best grasp across poses)
and �1 (least likely stable pose probability) values, and show a top-down view of its three most likely stable
poses. We report mean values of each metric for the datasets. The first row of plots shows reward over time
for each policy in the original setting, where the object stays in the same pose until successfully grasped. The
second row shows policy performance in the more realistic setting where the object may topple into an alternate
pose when a grasp is unsuccessful. The value above each plot with toppling indicates the maximum difference in
transitioning via toppling and transitioning via grasping to a new pose. In both cases, Exploratory Grasping
quickly converges to optimal performance, while the other algorithms fail to reach optimal performance even
after 10,000 grasp attempts. This result holds even when Assumption 5.1 is violated.

6.4 Policy Learning with Toppling

We repeat the same experiments as in the previous section, with the additional condition that each
object may now topple into another pose when a grasp is unsuccessful (Section 3.2). We use the
toppling analysis from Correa et al. [28] to determine the toppling transition matrix for a given object.
Specifically, we generate the distribution of next states from a given state by sampling non-colliding
pushes across vertices on the object, finding their distribution of next states given perturbations
around the nominal push point, and average the distribution from all of the pushes. Then, during
policy rollouts, if a grasp fails, we choose the next state according to the corresponding topple
transition probabilities. See the last row of Figure 1 for learning curves for Exploratory Grasping and
baselines. Results suggest that even in cases where values of �s,s0 are considerably larger than ✏�s0 ,
Exploratory Grasping policies still achieve significantly better performance than baselines. These
results suggest that although Assumption 5.1 is needed for analysis, in practice Exploratory Grasping
can also efficiently explore grasps on objects where Assumption 5.1 is violated.

7 Conclusion

We study a new problem setting in which a robot is tasked with exploring grasps across stable
poses of an object by repeatedly attempting grasps and dropping the object to explore grasps on
new object poses. We formalize this problem as an MDP and study how the difficulty of grasp
exploration depends on intuitive parameters of this MDP. We then present Exploratory Grasping,
an efficient, bandit-inspired, algorithm for exploring grasps on an unknown polyhedral object.
Exploratory Grasping can be flexibly used with any no-regret online learning algorithm such as UCB
or Thompson sampling and results suggest that Exploratory Grasping is able to explore grasps on
unknown polyhedral objects significantly more efficiently than online learning algorithms which
do not effectively leverage the structure of the grasping problem. In future work, we will explore
applying Exploratory Grasping to grasp exploration in a physical bin picking setup. One nice property
of Exploratory Grasping is that in the process of exploring grasps, it also explores different stable
poses of the object. Thus, we are excited to explore further applications of Exploratory Grasping
beyond grasp exploration. For example, Exploratory Grasping could be used to explore different
object poses to construct accurate 3D models of unknown objects or inspect parts for defects.
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Exploratory Grasping: Performance Bounds and

Asymptotically Optimal Algorithms for Learning to

Robustly Grasp an Unknown Polyhedral Object

Supplementary Material

A Proofs

Here we provide the proofs for all results in Section 4 and Section 5 in the main text.

A.1 Proof of Lemma 4.1

Consider grasp MDP M
0 for which the object stable pose does not change when a grasp fails. Thus,

it must be the case that �l,m = 0 when l 6= m and �l,l = 1 8l. Note that for any grasp MDP M,
it must be the case that D(M)  D(M0) since the probability of transition between any pair of
distinct states in M

0 is at most the probability of transition in M. Now we establish a bound on
D(M) by bounding D(M0).

Without loss of generality, let �1  �s 8s 2 S. Additionally, define ⇡
⇤ as the policy which selects

the grasp with highest success probability on all poses, with associated probability transition matrix
P

⇡
⇤

and with hitting time T
⇡
⇤

s!s0 defined as in Definition 4.1. Then, the diameter of M0 can be
computed as follows.

For MDP M
0, it must be the case that

min
⇡

T
⇡

s!s0 = T
⇡
⇤

s!s0 (9)

since ⇡⇤, the policy which always picks the highest quality grasp on each pose, minimizes the hitting
time between any pair of poses s, s0. Furthermore, note that

max
s 6=s0

T
⇡
⇤

s!s0 = max
s

T
⇡
⇤

s!1 (10)

since for any starting pose s, the hitting time between s and s
0 will always be highest for s0 = 1 (the

pose with lowest drop probability) for any policy ⇡. Thus, we see that

D(M0) = max
s

T
⇡
⇤

s!1 (11)

Finally, we leverage equation 11 to compute an upper bound on D(M0) as follows.

Let ⇡✏ be any policy which selects a grasp with success probability ✏ on each stable pose l. Note
that by Assumption 3.3 we assume that there exists a grasp with success probability at least ✏ on
each pose. Without loss of generality, we can consider the case that there exists a grasp with success
probability exactly ✏ on each pose and the policy which selects these grasps since the hitting times
under this policy will only be lower than those under a policy which selects grasps with success
probability greater than ✏. Then, it follows that

min
⇡

T
⇡

s!s0  T
⇡✏
s!s0 8s, s

0 (12)

Now note that since we are considering pose evolution under ⇡✏, which selects a grasp of the same
quality ✏ on any pose, the starting pose s does not affect the hitting time. Combining this with the
fact that the hitting time to the least likely pose (pose 1) will always be the highest for any policy ⇡

and inequality (12) yields that

D(M0)  max
s 6=s0

T
⇡✏
s!s0 = T

⇡✏
2!1 (13)

Since the choice of s does not matter under ⇡✏, we use s = 2 above without loss of generality.
Now, note that the hitting time to pose 1 under ⇡✏ is distributed as a geometric random variable with
parameter ✏�1, which has mean 1

✏�1
, yielding the desired result.
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A.2 Proof of Theorem 4.1

The result immediately follows from combining the diameter bound from Lemma 4.1 and the regret
bounds established for UCRL2 [1], KL-UCRL [2] and PSRL [3] (average regret Õ(DS

p
A/T )) and

for UCRLV [4] (average regret Õ(
p
DSA/T )) where D is the MDP diameter and S and A are the

cardinalities of the state space and action space respectively.

A.3 Proof of Theorem 5.1

We bound the expected regret of Exploratory Grasping by decomposing the regret into two terms,
one which depends on the divergence between the distribution of poses seen by the optimal policy
and ⇡

B, and the other of which depends on the difference in rewards attained by ⇡
B and ⇡

⇤ when
evaluated on the distribution of poses seen by ⇡

B. For simplicity, we refer to ⇡
B as ⇡ for the proof.

E
⇥
R

B(T )
⇤
=

SX

s=1

p
⇤
T
(s)E

2

4 1

T ⇤
s

T
⇤
sX

t=1

R(s,⇡⇤(s))

3

5�

SX

s=1

p
⇡

T
(s)E

2

4 1

T⇡
s

T
⇡
sX

t=1

R(s,⇡t(s))

3

5 (14)

=
SX

s=1

(p⇤
T
(s)� p

⇡

T
(s)) g⇤

s
(T ⇤

s
) +

SX

s=1

p
⇡

T
(s) (g⇤

s
(T ⇤

s
)� g

⇡

s
(T⇡

s
)) (15)

= E
⇥
R

B
⇡
(T )
⇤
+

SX

s=1

(p⇤
T
(s)� p

⇡

T
(s)) g⇤

s
(T⇡

s
) (16)

where (15) follows from letting g
⇤
s
(T ⇤

s
) = E

h
1
T⇤
s

PT
⇤
s

t=1 R(s,⇡⇤(s))
i

and g
⇡

s
(T⇡

s
) =

E
h

1
T⇡
s

PT
⇡
s

t=1 R(s,⇡t(s))
i

and (16) follows from letting E
⇥
R

B
⇡
(T )
⇤

denote the expected regret on
the distribution of poses visited by policy ⇡ and noting that the average reward for the optimal policy,
g
⇤
s
, is independent of the timesteps spent in the pose (i.e., g⇤

s
(T⇡

s
) = g

⇤
s
(T ⇤

s
) 8s).

We first focus on the first term in (16). We know that E
⇥
R

B
⇡
(T )
⇤

approaches zero if each pose is
visited infinitely often in the limit as T ! 1 provided that B is a no-regret online learning algorithm:

lim
T!1

p
⇡

T
(s) > 0, 8s 2 {1, 2, . . . , S} ) lim

T!1
E
⇥
R

B
⇡
(T )
⇤
= 0 (17)

Thus, it remains to be shown that under ⇡, all poses are visited infinitely often in the limit as T ! 1.
Note that this statement is equivalent to showing that in the limit as T ! 1, bandit algorithm B

selects grasps on each pose with non-zero success probability with non-zero probability. Suppose that
this was not the case (i.e., that as T ! 1, B assigns zero grasp probability to all grasps with non-zero
success probability). This would imply that B only selects grasps with zero success probability, and
thus incurs constant regret on its own distribution (limT!1 E

⇥
R

B
⇡
(T )
⇤
> 0). This contradicts the

initial assumption that B is a no-regret online learning algorithm, showing that under ⇡, all poses
must be visited infinitely often in the limit as T ! 1.

Now we shift our attention to the second term in (16). Given that B is a no-regret online learning
algorithm, it must be the case that g⇡

s
(T⇡

s
) �����!

T⇡
s !1

g
⇤
s
(T⇡

s
) 8s. This implies that in the limit as

T ! 1, ⇡ and ⇡
⇤ have the same success rate on all stable poses. Two policies with the same

success rate on all stable poses induce the same Markov chain over S , and thus admit the same stable
pose distribution. Thus, p⇡

T
(s) ����!

T!1
p
⇤
T
(s), implying that the second term also approaches 0 as

T ! 1.

B Experimental Details

Object Selection: We choose 7 objects from the set of adversarial objects in Dex-Net 2.0 [5] because
these objects had empirically been shown to be difficult to grasp for the Dex-Net policy. Similarly, the
recently-introduced EGAD! object dataset [6] was created to contain objects with few high-quality
parallel-jaw grasps. For this dataset, we select all objects for which there exists at least one sampled
grasp of quality ✏ = 0.1 on at least one stable pose of the object. Of the 49 objects in the EGAD
evaluation dataset, 39 met this criterion.
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Pose Selection: For each of the objects, we remove stable poses from the distribution in simulation
if they occur with less than a 0.1% chance or if they do not contain a sampled grasp with quality at
least ✏ = 0.1. When a pose is removed, the remaining stable pose distribution is renormalized.

Grasp Sampling: We sample a set of K = 100 parallel-jaw grasps on the image observation of each
pose of each object as in [5]. This sampling process is done using the depth image grasp sampler
from the GQCNN repository and is repeated for up to 10 iterations. At each iteration, the sampled
grasps’ ground truth qualities are calculated using the robust wrench resistance metric that measures
the ability of the grasp to resist gravity [7]. If no grasps are found with quality of at least ✏ = 0.1, then
the sampling process is repeated for another iteration where more grasps are sampled. If a grasp is
found with quality at least ✏, then that grasp is selected along with 99 other grasps chosen at random
from the sampled grasps. If the maximum number of iterations are exceeded without finding a grasp
with quality ✏, the stable pose is discarded.

C Sensitivity Experiments

C.1 Sensitivity to Grasp MDP Parameters

We perform sensitivity analysis of Exploratory Grasping to the grasp MDP parameters ✏ and
�1. For these experiments, we evaluate the policy using a set of synthetic objects with �1 =
{0.001, 0.01, 0.1, 0.2} and ✏ = {0.1, 0.25, 0.5, 0.75, 1.0} and for simplicity consider the case in
which toppling is not possible. In each case, we choose a single grasp on each pose to have reliability
✏ with all other grasps having a mean parameter of 0. The results are shown in Figure 1. These results
suggest that unless ✏ or �1 are low, Exploratory Grasping quickly converges to the optimal policy. In
particular, ✏ has an outsized effect on the accumulated reward; with ✏  0.10, we observe that the
policy fails to approach the optimal policy regardless of �1 through the first 10,000 timesteps.

Figure 1: Sensitivity of Exploratory Grasping to the grasp MDP parameters ✏ and �1, as shown across 20
synthetic objects. Unless ✏ or � is low, Exploratory Grasping quickly converges to the optimal policy. However,
when either is low, particularly ✏, the policy converges much more slowly, taking even more than the 10,000
timesteps shown for some combinations.
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