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The goal of this research is to develop a high performance system for trajectory 

optimization of continuously flying solar aircraft. Here, during the day solar power is used 

to propel the aircraft and to store energy in batteries. The battery energy is then used for 

continued flight at night. The objective is to find the minimum battery size needed for 

continuous operation by optimizing several control variables. Traditional methods, where 

the differential equations that describe flight motion are solved in an inner loop while an 

outer loop performs the optimization of the control variables, are inefficient for this problem 

because the boundary conditions are not only unknown, but are required to be identical due 

to cyclic operation. Furthermore, state variable constraints are difficult to handle with the 

sequential approach. To address this issue, a computationally efficient trajectory 

optimization method using orthogonal collocation on finite elements is first developed. After 

testing on a glider range optimization problem, this method was applied to the solar aircraft 

trajectory optimization problem. The system developed is robust, computationally efficient, 

and can be used to optimize and control multi-purpose solar aerial vehicles. Plans are 

underway to design and build a solar UAV using this optimization system. 

Introduction 

This paper addresses two important problems. First, a general method to solve flight trajectory optimization 

problems is developed. Second, this method is applied to create a comprehensive optimization system to achieve 

continuous solar flight in an energy efficient manner. Continuous flight is achieved by cyclic operation, where the 

trajectory is repeated indefinitely, typically every 24 hours. The word continuous is used in the theoretical sense, as 
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continuous or perpetual flight is not achievable in practice due to degradation of batteries and aircraft components 

over time.  

The importance of flight trajectory optimization has been recognized in both general aviation and space 

applications; a review of applications and methods is presented in [1]. The development of better methods for 

solving these optimization models can have substantial impact on the aerospace industry. The prevalent class of 

algorithms for solving these problems are largely sequential in nature, where the differential equations that describe 

flight motion are solved in an inner loop while an outer loop performs the optimization of the control variables. 

These methods can be computationally expensive as they require repeated solution of the differential equations for 

each guess of the control variable in addition to calculation of gradients for the optimizer [2]. The algorithm may 

also terminate if the differential equation solver fails at intermediate guesses of the control variables given by the 

optimizer. For the optimization of solar aircraft, these sequential methods face unique challenges because the 

boundary conditions are not only unknown, but are required to be identical due to cyclic operation. Furthermore, 

constraints on the state variables cannot be enforced. Solving the differential equations and performing the 

optimization simultaneously can address these drawbacks [3, 4], but this requires good initialization of the state 

variables. In this research, I build upon a simultaneous solution method called orthogonal collocation on finite 

elements [4] to develop a robust trajectory optimization system with an effective initialization strategy.  

The simultaneous method mentioned above can be applied to many flight trajectory optimization problems. 

The application to solar flight is uniquely interesting from an optimal control perspective since the available power 

is time dependent. The recent completion of the cross continental flight of the Solar Impulse [5] has sparked 

renewed interest in solar aviation. The design of solar vehicles with batteries that can offer continuous flight has also 

seen a lot of interest [6, 7, 8]. Here, during the day solar power is used to propel the aircraft and to store energy in 

batteries. The battery energy is then used for continued flight at night. Such aircraft offer unique opportunities, 

especially for unmanned flight, and can be used for communications, imagery, surveillance, and assistance during 

natural disasters. While the design of such aircraft has seen a lot of interest, there has been little reported in terms of 

the trajectory optimization for these aircraft. One notable attempt [9] has been made in this regard; however, the 

battery mass does not appear to be considered in their work, results are given for only one scenario, and 

computational performance results are not reported. 



 

I address this gap by developing a reliable and computationally efficient system that can determine the optimal 

trajectory for continuous solar flight. The primary goal is to minimize the mass of the battery needed while allowing 

sufficient energy to make it through the night. To do this, the development of an efficient algorithm is critical, which 

is the first step of the research. In the second step, a detailed mathematical model for the solar aircraft is built and 

the solution algorithm developed in the first step is applied. This system enables a user to find the optimal trajectory 

for continuous flight given input parameters such as payload, battery efficiency, altitude limits, latitude, day of year, 

and other aircraft specifications. In addition, limiting cases have also been studied to precisely establish the latitude 

range within which continuous solar flight is theoretically possible.  

This paper is composed of two sections. The first section will discuss the solution methodology and the test 

results on a glider range maximization problem proposed in [10], which is used as a benchmark for evaluating the 

method. The second section will describe the formulation and solution of the solar aircraft trajectory optimization 

problem. 

Section I – Development of Solution Algorithm for the Optimal Control Problem 

The general optimal control problem (OCP) is presented as follows, where 𝑍𝑜𝑏𝑗 is the 

        𝑀𝑎𝑥𝑖𝑚𝑖𝑧𝑒 𝑍𝑜𝑏𝑗(𝑧(𝑡), 𝑦(𝑡), 𝑢(𝑡), 𝑝) 𝑤ℎ𝑒𝑛 

{
 
 
 

 
 
 𝐹 (

𝑑𝑧

𝑑𝑡
, 𝑧(𝑡), 𝑦(𝑡), 𝑢(𝑡), 𝑝) = 0  

 𝐺(𝑧(𝑡), 𝑦(𝑡), 𝑢(𝑡), 𝑝) = 0

𝑧𝐿 ≤ 𝑧(𝑡) ≤ 𝑧𝑈
𝑦𝐿 ≤ 𝑦(𝑡) ≤ 𝑦𝑈
𝑢𝐿 ≤ 𝑢(𝑡) ≤ 𝑢𝑈
𝑝𝐿 ≤ 𝑝 ≤ 𝑝𝑈
𝑧(0) = 𝑧0 

               (𝑂𝐶𝑃)  

objective function, F is the set of differential equations, G is the set of algebraic equations, 𝑧(𝑡) is the set of state 

variables, 𝑦(𝑡) is the set of algebraic variables, 𝑢(𝑡) is the set of control profiles to be optimized, and p is the set of 

time-invariant parameters that are optimized in order to maximize 𝑍𝑜𝑏𝑗 . Subscripts L and U refer to the lower and 

upper bounds respectively. 

The first step in the solution algorithm is to assume that 𝑧(𝑡) can be expressed as a polynomial of order N within 

the integration domain. The Lagrange interpolating polynomials are a convenient form to express 𝑧(𝑡) in terms of its 

values at time point  𝑡𝑗, 𝑗 ∈ [0, 𝑁] , as shown below:  



 

𝑧(𝑡) =  ∑𝑧(𝑡𝑗)𝐿𝑗(𝑡)

𝑁

𝑗=0

 

 

(1)        where       𝐿𝑗(𝑡) =  ∏
𝑡 − 𝑡𝑘
𝑡𝑗 − 𝑡𝑘

𝑁

𝑘=0
𝑘≠𝑗

 

 

(2) 

 

Differentiating 𝑧(𝑡), we get  
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(4) 

By substituting the value for 𝑑𝑧/𝑑𝑡 from equation 3 into the optimal control problem (OCP), we can convert 

the OCP into a set of algebraic equations which are satisfied at special time points tj, called collocation points. These 

points are set to be located at the roots of 𝑁𝑡ℎ order orthogonal polynomials within the integration interval. By using 

this collocation procedure, exact accuracy in the solution of the differential equation is guaranteed as long as the 

state variable is a polynomial of order 2N-1 or less [11]. Thus, the OCP is transformed into a non-linear 

programming (NLP) model, where u(tj) is optimized to determine z(tj) and y(tj). In order to ensure integration 

accuracy, the integration domain is divided into several finite elements, which allows for the use of a lower order 

polynomial within each finite element. Continuity of the state variables between the finite elements is ensured. This 

method, also known as orthogonal collocation on finite elements, has been used in chemical engineering 

applications [2, 4]. I implemented the discretization procedure described above to convert the OCP to its equivalent 

NLP in the General Algebraic Modeling System (GAMS) modeling language [12]. To account for situations in 

which the end of the integration horizon (some time 𝑇𝑓) is unknown, the integration horizon was normalized to a [0, 

1] domain. To do this, a variable ω = 
𝑡

𝑇𝑓
 was created, where t is the time in seconds counted from the beginning of 

the integration interval. In this way, the start and end of each interval is clearly defined. This also enables use of 

orthogonal polynomial roots on the [0, 1] domain as collocation points regardless of the size of the integration 

interval. However, the chain rule must be used to convert  
𝑑𝑧(𝑡)

𝑑𝑡
 to 

1

𝑇𝑓

𝑑𝑧

dω
 . In the implementation, the differential 



 

equations are written with respect to the scaled ω variable, and thus the total integration horizon can still be 

optimized. The generated NLP is then solved using CONOPT to maximize the objective function. CONOPT is an 

efficient implementation of the generalized reduced gradient method and has better relative performance for models 

that are very nonlinear and in which achieving feasibility is difficult [13]. The implementation allows for flexibility 

in many algorithmic parameters such as the initialization strategy, polynomial order for approximation, choice of 

orthogonal polynomial roots, and number of finite elements. The algorithm was first tested on a well-known 

problem in order to evaluate the best parameters for the solution method. 

Algorithm Performance Analysis and Improvement 

Rigorous testing of the method was done on the well documented glider range maximization problem [10], 

which was also used to tune the algorithm for general use. In this problem, the lift coefficient is optimized to 

maximize the horizontal range of a glider that has a known thermal updraft ahead of it. The glider launches from a 

1000 m cliff with a known initial speed. The aim is to cover maximum horizontal distance while dropping no more 

than 100 m vertically. The mathematical model for this problem is shown in the equations below [10]:  

Hang Glider Model (HG-1) 

Variables 

𝑥 horizontal position (m) 𝜇𝑎(𝑥) thermal updraft (𝑚/𝑠) 

𝑦 vertical position (m) 𝑐𝐿 lift coefficient 

𝑣𝑥 x component of velocity (𝑚/𝑠) 𝑐𝐷 drag coefficient 

𝑣𝑦 y component velocity (𝑚/𝑠) 𝐿 lift (N) 

𝑣𝑟  net velocity (𝑚/𝑠) 𝐷 drag (N) 

𝜂  flight angle (rad) 𝑡, 𝑡𝑓 time (s), total flight time (s) 

Parameters 

𝑥(0) initial x position 0  m 

𝑦(0) initial y position 1000  m 

𝑣𝑥(0) x component of initial velocity 13.23  
𝑚

𝑠
 

𝑣𝑦(0) y component of initial velocity -1.288  
𝑚

𝑠
 



 

𝑦(𝑡𝑓) final position in y direction 900 m 

𝑆 wing area  14 𝑚2 

𝑚 mass of hang glider 100 kg 

𝜌 air density  1.13 
𝑘𝑔

𝑚3 

𝑔 gravitational acceleration 9.81  
𝑚

𝑠2
 

Objective: 𝑀𝑎𝑥𝑖𝑚𝑖𝑧𝑒 𝑥(𝑡𝑓) by finding the optimal lift coefficient profile 𝑐𝐿(𝑡) subject to: 

Equations  

𝑑𝑥

𝑑𝑡
=   𝑣𝑥 (5) 

𝑑𝑦

𝑑𝑡
=   𝑣𝑦 (6) 

𝑑𝑣𝑥
𝑑𝑡

=  
1

𝑚
 (−𝐿𝑠𝑖𝑛(𝜂) − 𝐷𝑐𝑜𝑠(𝜂)) (7) 

𝑑𝑣𝑦

𝑑𝑡
=  

1

𝑚
 (𝐿𝑐𝑜𝑠(𝜂) − 𝐷𝑠𝑖𝑛(𝜂)  − 𝑚𝑔) (8) 

𝜂 = arctan (
𝑣𝑦 − 𝜇𝑎(𝑥)

𝑣𝑥
) (9) 

𝑣𝑟  = √𝑣𝑥
2 + (𝑣𝑦 − 𝜇𝑎(𝑥))

2

 (10) 

𝐿 =  
1

2
𝑐𝐿𝜌𝑣𝑟

2𝑆 (11) 

𝐷 =  
1

2
𝑐𝐷𝜌𝑣𝑟

2𝑆 (12) 

𝑐𝐷 =  0.034 + 0.069662(𝑐𝐿)
2 (13) 

𝜇𝑎(𝑥) = 2.5 (1 − (
𝑥

100
− 2.5)

2

) 𝑒−(
𝑥

100
−2.5)

2

 (14) 

𝑐𝐿 ≤  1.4 (15) 

𝑣𝑥(0) = 𝑣𝑥(𝑡𝑓),    𝑣𝑦(0) = 𝑣𝑦(𝑡𝑓) (16)1 

                                                 
1 This constraint is eliminated in model HG-2 described later in the paper 



 

The thermal updraft profile, 𝜇𝑎(𝑥) is shown in Fig. 1, which also shows small downdraft regions at the 

boundaries of the thermal. The peak updraft is 250 m from the launch point. This problem was solved with a second 

order polynomial approximation over 500 equally spaced finite elements using Radau [14] collocation points. The 

key findings are as follows: 

a) The method I implemented solved the HG-1 model easily in just 9.74 seconds (240 solver iterations) on a 

Lenovo T430 machine with an Intel i5 2.5 GHz processor and 4.00 GB of memory running Windows 7 

Professional2. A maximum range of 1247.99 m was obtained, which compares favorably with the range of 

1247.60 m obtained in [10] and 1248.03 m obtained in [3]. The optimal profile of the lift coefficient shown in 

Fig. 2 matches the profile reported in [10] and [3], confirming the accuracy of the discretization. In Fig. 2, the 

lift coefficient rises to take advantage of the thermal and then returns to a lower value after the thermal passes, 

which enables reduction of lift induced drag. The position charts are shown in Fig. 3 and 4. The horizontal 

position of the glider changes roughly linearly while the vertical position indicates a dip in altitude before the 

thermal and then an increase in the altitude due to the thermal winds. Finally, the altitude decreases roughly 

linearly until the end of the flight. I did not encounter any of the initialization difficulties reported in [10] and 

my method did not require the complex derivation of adjoint equations described in [10]. The velocity profile  

was initialized with just the initial launch values, the y position profile with the initial vertical position, and the 

x position profile with a value of 10 m. The lift coefficient was initialized at 0.7. 

                                                 
2 All computation times in this paper are reported using this computer 

Fig. 1 Thermal Updraft vs. Horizontal position (x) Fig. 2 Optimal Lift Profile for HG-1 



 

b) Having solved the HG-1 model easily, more studies were conducted. To explore new opportunities to maximize 

the range, a model HG-2 was created by eliminating equation 16, thus allowing the final velocity to be different 

from the initial launch velocity. Interestingly, the HG-2 model yielded a much higher range (1311.17 m) 

compared to the HG-1 model value of 1247.99 m. I believe this is because of the sharp increase in the lift 

coefficient (Fig. 5) near the end of the flight, which I dub as a ‘mad-dash’ to get a final burst of horizontal 

distance while still ending the flight above the required 900 m altitude mark (Fig. 6). Since this rise in the lift 

coefficient is short lived, the increased drag has a limited negative impact on the range. Although this ‘mad-

dash’ in the lift coefficient would likely affect the stability of the glider, it shows the efficacy of the method in 

solving models with sharp changes in the control profile. A graph of the vertical position of the glider is shown 

in Fig. 6, which shows the effects of the final surge in the lift coefficient on the altitude.  

c) The HG-2 model described above required 1714 solver iterations (99.7 sec) compared to the 240 solver 

iterations (9.74 sec) for the simpler HG-1 model. I investigated this issue further and found an initialization 

strategy that improved computational performance, which I call the 2-solve method. This idea involves fixing 

Fig. 3 Horizontal Position vs. Time for HG-1 Fig. 4 Vertical Position vs. Time for HG-1 

Fig. 5 Optimal Lift Profile HG-2 Fig. 6 Vertical position vs. time for HG-2 



 

control variables at nominal values3, generating the profiles for the state variables, and then starting the 

optimization. By using this 2-solve method, the HG-2 model was solved with a combined 139 solver iterations 

(10.5 sec). Further studies with the HG-2 model confirmed that the solution is consistently more reliable when 

the 2-solve method is used.  

d) Regarding polynomial order, second order polynomial approximation within each finite element resulted in the 

best computational performance without sacrificing solution quality. For the HG-1 model, the difference in the 

range obtained by moving from second order to third order polynomial approximation was just 0.000024%, 

with a 392% increase in computation time. In addition, I tried Legendre and Radau roots for the collocation 

[14], and found that because Radau collocation provides roots at the end of the integration interval, no 

interpolation is needed to get the values at the end of the integration interval and thus it is better adapted to 

enforce state variable continuity across finite elements.  

e) As the method requires sufficient finite elements for 

accuracy, I experimented and found that the solution stays 

practically identical when more than 200 finite elements 

are used, confirming the precision of the discretization. All 

the tests above were run using 500 finite elements and the 

objective function for the HG-1 model experienced 

negligible change (+0.000008%) when adding 100 more 

finite elements. In Fig. 7, the computational performance 

is shown for different finite element trials. As the number of finite elements is increased, the degrees of freedom 

increase linearly along with the number of non-linear non-zeroes (Fig. 7) in the equation matrix. However, the 

increase in computation time is relatively moderate when the number of finite elements is increased. 

f) I initially believed that trigonometric functions would inhibit the performance of the solver due to their 

oscillatory nature. To investigate this, trigonometric functions were replaced with their equivalent ratios (for 

example sin(𝜃) = 𝑣𝑦/√𝑣𝑥
2 + 𝑣𝑦

2 ).  However, the resulting model was harder to converge, and the HG-2 model 

                                                 
3 The computation time did not vary substantially for different settings of the nominal values 

Fig. 7 Computation Time vs. Finite Elements 



 

was numerically infeasible when the trigonometric functions were replaced. Therefore, I decided to keep the 

original formulation of the model. 

The above findings were used to set the tuning parameters for the solution algorithm. In summary, the default 

settings include second order polynomial approximation with Radau collocation points and the 2-solve method for 

effective initialization. The trigonometric functions in the force balance equations are to be kept as is. The 

simultaneous method I implemented addresses the drawbacks in the sequential method. Repeated solution of the 

differential equations for each iteration of the control variable guesses is eliminated because the solution of the 

differential equations and the optimization are performed simultaneously. Tests on the glider model show that the 

method has attractive computational performance.  

Section II – Development of Solar Aircraft Trajectory Optimization Model 

Having established the numerical methods, I sought to apply it to the trajectory optimization of continuous solar 

flight. Here, solar power is used for propulsion as well as charging the batteries during the day. This battery energy 

is then used for continued flight during the night. Perpetuity is enforced by setting the boundary conditions to be the 

same within the repetitive solar cycle (24 h). Therefore, the state variables are required to have the same values at 

the beginning and end of the cycle. The maximum energy stored in the battery is minimized, thus effectively 

minimizing the battery mass. The mathematical model is synthesized by combining the equations for atmospheric 

effects, flight dynamics, solar flux, battery operation, and panel performance. In this model, the hardware parameters 

(panel efficiency, panel mass density, battery energy density) are based on currently available technology. The 

source of this information is referenced in the parameter list. The model for each of the phenomena described above 

is shown below. 

Atmospheric Effects 

Temperature, Pressure, and Air Density as functions of height [15]. 

Variables 

T temperature (K) h height from sea level (m) 

𝑝 air pressure (Pa) 𝜌 air density (
𝑘𝑔

𝑚3) 

Parameters 

𝑇0 sea level standard temperature 288.15  K 



 

𝐿𝑇 temperature lapse rate 0.0065  
𝐾

𝑚
 

𝑝0 sea level atmospheric pressure 101325 Pa 

𝑔 surface gravitational acceleration 9.81  
𝑚

𝑠2
 

𝑀 molar mass of dry air 0.0289644 
𝑘𝑔

𝑚𝑜𝑙
 

𝑅 ideal universal gas constant 8.31447 
𝐽

𝑚𝑜𝑙 𝐾
 

Equations  

 𝑇 = 𝑇0 − 𝐿𝑇ℎ (17) 

𝑝 = 𝑝0 (1 −
𝐿𝑇ℎ

𝑇0
)

𝑔𝑀
𝑅𝐿𝑇

 

(18) 

𝜌 =  
𝑝𝑀

𝑅𝑇
 

(19) 

Flight Dynamics  

The flight dynamics equations are from [16]. Equations for the drag coefficient are regressed from values provided 

in [6]. Solar panel mass is calculated based on a mass density of 0.840 
𝑘𝑔

𝑚2 as provided in [17]. 

Variables 

𝑣  velocity (
𝑚

𝑠
) 𝑚𝑝𝑎𝑦𝑙𝑜𝑎𝑑  mass of payload (𝑘𝑔) 

𝜃 angle to horizontal (𝑟𝑎𝑑) 𝑚𝑝𝑎𝑛𝑒𝑙  mass of solar panel (𝑘𝑔) 

D drag (𝑁) 𝑚𝑏𝑎𝑡𝑡𝑒𝑟𝑦 mass of battery (𝑘𝑔) 

𝑇𝑃 thrust (𝑁) 𝐸𝑏𝑎𝑡𝑚𝑎𝑥 maximum energy stored in battery (𝑘𝐽) 

𝐿 lift (𝑁) 𝑐𝐿 lift coefficient  

𝑠 horizontal distance (𝑚) 𝑆 wing planform area (𝑚2)  

& solar panel area (𝑚2) 

𝑡 time (𝑠) 𝑐𝐷 drag coefficient 

𝑚 total mass of aircraft (𝑘𝑔)   

 

 



 

Parameters 

𝑚𝑎𝑖𝑟𝑓𝑟𝑎𝑚𝑒  mass of airframe 136 𝑘𝑔 

𝐸𝐷 battery energy density [18] 1260 
𝑘𝐽

𝑘𝑔
 

𝑐𝐷0 drag equation constant 0.0108 

𝑘𝑑1 drag equation constant 0.0011 

𝑘𝑑2 drag equation constant 0.0127 

Equations  

𝑚
𝑑𝑣

𝑑𝑡
+ 𝑚𝑔𝑠𝑖𝑛(𝜃) + 𝐷 − 𝑇𝑃 = 0 

(20) 

𝑚𝑣
𝑑𝜃

𝑑𝑡
+𝑚𝑔𝑐𝑜𝑠(𝜃) −  𝐿 = 0 

(21) 

𝑑ℎ

𝑑𝑡
− 𝑣𝑠𝑖𝑛(𝜃) = 0 

(22) 

𝑑𝑠

𝑑𝑡
− 𝑣𝑐𝑜𝑠(𝜃) = 0 

(23) 

𝑐𝐷 = 𝑐𝐷0 + 𝑘𝑑1𝑐𝐿 + 𝑘𝑑2(𝑐𝐿)
2 (24) 

𝐿 =  
1

2
𝑐𝐿𝜌𝑣

2𝑆 
(25) 

𝐷 =  
1

2
𝑐𝐷𝜌𝑣

2𝑆 
(26) 

𝑚𝑝𝑎𝑛𝑒𝑙 = 0.840𝑆 (27) 

𝑚𝑏𝑎𝑡𝑡𝑒𝑟𝑦 = 𝐸𝑏𝑎𝑡𝑚𝑎𝑥/𝐸𝐷 (28) 

𝑚 = 𝑚𝑎𝑖𝑟𝑓𝑟𝑎𝑚𝑒 +𝑚𝑝𝑎𝑦𝑙𝑜𝑎𝑑 +𝑚𝑝𝑎𝑛𝑒𝑙 +𝑚𝑏𝑎𝑡𝑡𝑒𝑟𝑦 (29) 

Solar Flux, Battery, and Panel Performance 

The equations governing the flow of power from the sun to the propeller and battery are written below. A schematic 

of this flow is shown in Fig. 9. This section includes the calculation of the incident solar flux [19], panel power 

Fig. 8 Free Body Diagram of Airplane 
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generation, and the differential equation for battery energy. Effects of latitude, day of year, time of day, air mass 

attenuation [19], and efficiencies of mechanical devices [9] are taken into account.  

Variables 

𝜎 Sun hour angle (𝑟𝑎𝑑) 𝑓𝑟 raw solar flux on panel (
𝑊

𝑚2 ) 

∅ declination angle (𝑟𝑎𝑑) 𝑓𝑎 adjusted solar flux (
𝑊

𝑚2 ) 

d day of the year 𝑃𝑠𝑜𝑙𝑎𝑟  total power generated by panel (W) 

𝜑 elevation angle (𝑟𝑎𝑑) 𝑃𝑇  total power needed for the aircraft (𝑊) 

𝛿 latitude (𝑟𝑎𝑑) 𝐸𝑏𝑎𝑡  energy stored in battery (𝑘𝐽) 

𝑓𝑠 solar flux on horizontal panel without 

atmospheric effects (
𝑊

𝑚2 ) 

𝑃𝑏𝑎𝑡𝐷 power discharged from battery (𝑊) 

𝐼𝐷 solar flux within atmosphere (
𝑊

𝑚2 ) 𝑃𝑏𝑎𝑡𝐶 power used to charge battery (𝑊) 

𝐴𝑀 air mass effect factor   

Parameters 

𝑒𝑠𝑜𝑙 efficiency of solar panel [17] 0.295 

𝑒𝑝𝑟𝑜𝑝 efficiency of propeller 0.716 

𝑃𝑖𝑛𝑡  power for fixed internal components 100 𝑊 

𝑒𝑏𝑎𝑡 efficiency of battery 0.960 

Fig. 9 Power Flow Chart 



 

a light intensity constant 0.14 

Equations 

𝜎 =  (−180 +
15𝑡

3600
)
𝜋

180
 

(30) 

∅ = sin−1 (sin (
23.45𝜋

180
) sin (360𝜋

(𝑑 − 81)

65700
))   

(31) 

𝜑 = sin−1(sin(∅) sin(𝛿) + cos(∅) cos(𝛿)cos(𝜎) )   (32) 

𝑓𝑠 = 1353 sin (𝜑) (33) 

𝐴𝑀 = 
1

sin (𝜑) + 0.50572 (6.07995 +
180
𝜋
 𝜑)

−1.6364 
(34) 

𝐼𝐷 = 1353[(1 − 𝑎ℎ)0.7𝐴𝑀
0.678

+ 𝑎ℎ] (35) 

𝑓𝑟 = 𝐼𝐷  sin (𝜑) (36) 

𝑓𝑎 = max (0, 𝑓𝑟) (37) 

𝑃𝑠𝑜𝑙𝑎𝑟 = (𝑓𝑎)(𝑆)(𝑒𝑠𝑜𝑙) (38) 

𝑃𝑇 = 𝑃𝑖𝑛𝑡  +  
𝑣𝑇𝑃
𝑒𝑝𝑟𝑜𝑝

 
(39) 

𝑑𝐸𝑏𝑎𝑡
𝑑𝑡

+
0.001𝑃𝑏𝑎𝑡𝐷

𝑒𝑏𝑎𝑡
− 0.001𝑃𝑏𝑎𝑡𝐶𝑒𝑏𝑎𝑡 = 0 

(40) 

Power Balance Constraints 

The battery charging rate must be less than available solar power:  𝑃𝑏𝑎𝑡𝐶 < 𝑃𝑠𝑜𝑙𝑎𝑟   (41) 

The battery discharge cannot exceed power needed by more than 1 W:  𝑃𝑏𝑎𝑡𝐷 < 𝑃𝑇 + 1 (42) 

Total Power Balance must be satisfied at all times:  𝑃𝑏𝑎𝑡𝐶 + 𝑃𝑇 < 𝑃𝑠𝑜𝑙𝑎𝑟 + 𝑃𝑏𝑎𝑡𝐷  (43) 

  Additional constraint to force discharge power to zero when sufficient solar flux is available: 

𝑃𝑏𝑎𝑡𝐷 = 0 𝑤ℎ𝑒𝑛 𝑠𝑜𝑙𝑎𝑟 𝑓𝑙𝑢𝑥 𝑎𝑏𝑜𝑣𝑒 𝑎𝑡𝑚𝑜𝑠𝑝ℎ𝑒𝑟𝑒 (𝑓𝑠) 𝑖𝑠 𝑔𝑟𝑒𝑎𝑡𝑒𝑟 𝑡ℎ𝑎𝑛 1000 
𝑊

𝑚2
 

(44) 

Constraints on Control Profiles 

1.35 < 𝑐𝐿 < 1.5 (45) 

5 < 𝑇𝑃 < 500  (46) 

 



 

Boundary Condition Equations to Enforce Perpetuity 

𝑣𝑏𝑒𝑔 = 𝑣𝑒𝑛𝑑 , 𝜃𝑏𝑒𝑔 = 𝜃𝑒𝑛𝑑  , ℎ𝑏𝑒𝑔 = ℎ𝑒𝑛𝑑 , 𝐸𝑏𝑎𝑡𝑏𝑒𝑔 = 𝐸𝑏𝑎𝑡𝑒𝑛𝑑 where the subscripts beg and end refer to 

the beginning and end of the repetitive 24 hour cycle. 

(47) 

Objective Function 

Min 𝑍𝑜𝑏𝑗 = 𝐸𝑏𝑎𝑡𝑚𝑎𝑥  ≈ 𝐸𝑏𝑎𝑡(𝑡𝑠𝑢𝑛𝑠𝑒𝑡), where 𝑡𝑠𝑢𝑛𝑠𝑒𝑡 denotes point at which the elevation angle is zero as 

the sun is descending to the horizon. 

(48) 

In reality, the point of maximum stored energy occurs slightly before sunset. At sunset, the solar flux is zero 

and in the period leading to sunset, some battery energy is used up by the aircraft. Determining the exact point of 

this maximum storage and then minimizing this value is computationally expensive. However, this determination is 

not necessary. When the energy stored at sunset is minimized, so too is the maximum energy stored, thus practically 

achieving the same objective with vastly improved computational performance. The cycle is assumed to be a 24 

hour cycle and is discretized into 500 equally spaced finite elements. The values of the control variables (𝑇𝑃, 𝐶𝐿, 

𝑃𝑏𝑎𝑡𝐶, and 𝑃𝑏𝑎𝑡𝐷) were optimized within each finite element. In addition, to prevent bang-bang control profiles, the 

control variables were held constant within each finite element and constraints on their variation between finite 

elements were enforced as shown below: 

|𝑇𝑃𝑖+1 − 𝑇𝑃𝑖| < 2 (49) |𝐶𝐿𝑖+1 − 𝐶𝐿𝑖| <   0.01 (50) 

|𝑃𝑏𝑎𝑡𝐶𝑖+1
− 𝑃𝑏𝑎𝑡𝐶𝑖

| < 25 (51) |𝑃𝑏𝑎𝑡𝐷𝑖+1
− 𝑃𝑏𝑎𝑡𝐷𝑖

| < 25 (52) 

The subscript i refers to the finite element index. These constraints were effective in reducing the multiple 

optimal solutions that were encountered in my initial optimization trials. The entire set of equations above was 

discretized with the procedure described in Section I and implemented in GAMS. Second order polynomials with 

Radau collocation points and 500 finite elements were chosen for the optimization. Furthermore, the 2-solve 

initialization strategy was used to improve computational performance. 

Results and Discussion 

Having completed the development and implementation of the mathematical model, various case studies 

were performed whose results are shown in Table 1 below. I chose a default case (bolded in Table 1) in order to 

compare against other cases. Each case modifies only the indicated parameter from the default, making it easy to 

establish causal links. The minimum amount of energy storage needed at sunset is reported for each case. The 



 

solution method is quite robust, as the set of diverse cases described above were solved with ease. To understand 

how variables such as velocity, flight angle, thrust, battery energy, and power usage change over the duration of the 

24 hour (86400 s) cycle, graphs are shown for the default case (bolded in Table 1) in Fig. 10-16. 

Table 1: Summary of case studies and results 

Minimum required battery capacity (in kJ) is reported for each case 

1. Altitude Range (m)          Min. Battery Size 

1,000 to 6,000                              11470 kJ 

1,000 to 8,000                              7832 kJ 

1,000 to 10,000                            5943 kJ  

 

 

2. Day of Year                    Min. Battery Size 

79 (Spring Equinox)                   14039 kJ 

172 (Summer Solstice)               7731 kJ 

180                                              7832 kJ                                  

265 (Fall Equinox)                      13938 kJ 

355  (Winter Solstice)                 20624 kJ 

3. Latitude                           Min. Battery Size 

0°  (Equator)                               13755 kJ 

37° N (San Francisco)               7832  kJ 

4. Solar Panel Efficiency    Min. Battery Size 

22%                                             8025 kJ 

29.5%                                         7832 kJ  

5. Payload (kg)                    Min. Battery Size 

0                                                  7832 kJ 

30                                                10761 kJ 

50                                                13057 kJ          

6. Battery Efficiency          Min. Battery Size 

50%                                            16145 kJ 

75%                                            10242 kJ 

96%                                            7832 kJ 

Fig. 10 Power Profiles for Default Case Fig. 11 Zoomed Power Profiles for Default Case 
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 Figure 10 is interesting as it shows that the solar 

power available is much greater than that used for powering 

the plane. This is because the default case is day 180, close 

to the summer solstice in San Francisco. The power 

discharge from the battery is quite small at night, and is 

barely visible in Fig. 10. Therefore, a zoomed version of 

Fig. 10 without the solar power is shown in Fig. 11. This 

discharge is so small because the plane has a smooth 

descent (Fig. 16) while providing the minimum required thrust of 5 N. Periods of peak discharge occur before 

sunrise when the plane has hit the lower altitude limit and around sunset to preserve the altitude (Fig. 16). Figures 13 

and 14 show that the flight angle is directly correlated to the thrust control variable. The angle is negative until 

sunrise and then increases as solar power is available. The velocity changes little throughout the flight, although it 

hits a low around sunrise and then increases with thrust and altitude.  

Fig. 16 Altitude vs. Time for Default Case 

Fig. 12 Lift Coefficient vs. Time for Default Case 
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Fig. 14 Velocity and Angle for Default Case Fig. 15 Battery Energy vs. Time for Default Case 

Fig. 13 Thrust vs. Time for Default Case 



 

Figure 15 shows the battery energy steadily decreasing from sunset to sunrise due to the power discharge to the 

propeller. Since the maximum battery energy is minimized, the battery reaches dead storage level (indicated by 0 kJ) 

slightly after sunrise, when there is enough solar power to provide sufficient thrust. The charging of the battery 

occurs mainly towards the end of the day, as seen in the battery energy chart in Fig. 15. However, I ran some trials 

by forcing an earlier start to the charging and realized that the objective function did not change, indicating the 

presence of multiple solutions. The reason for this is simple. As there is so much excess solar power available on the 

default day, which is in the middle of summer, there are multiple charging patterns that result in the same objective 

function. If the model were run on a day with less sunlight, such as the winter solstice, the solver would have far less 

freedom and charging would begin earlier on in the day. Figure 17 shows the battery energy graph when the model 

is run on the winter solstice. Predictably, with less sunlight, the battery must start charging much sooner in the day 

to ensure that it has sufficient energy for the night. As 

constraints on the model are tightened, the issue of 

multiple solutions becomes far less problematic. However, 

the solution method performs reliably even if the objective 

function is flat over a range of values.  

Figure 16 shows the altitude decreasing throughout 

the night to minimize energy use and then increasing 

throughout the day in order to gain potential energy from 

solar power. Figure 12 shows that the lift coefficient is relatively constant except for drops when the upper or lower 

bounds in altitude are reached. At these points, the solar flux is just barely enough to provide sufficient thrust. As the 

plane reaches the upper altitude limit, the lift coefficient is lowered to minimize lift induced drag. As night proceeds, 

the lift coefficient increases to reduce the fall rate, thus minimizing the battery energy requirement. Likewise, at the 

lower altitude limit, the solar flux is just enough to keep the altitude stable, so lowering the lift coefficient reduces 

the drag, thus minimizing battery use. Once sufficient solar flux is available, the lift coefficient increases to enable 

increase in altitude. When the model is optimized with all altitude restrictions removed, the two drops in the lift 

coefficient disappear.  

Case 1 in Table 1 shows the effect of the altitude range on the objective function. As the airplane is given more 

altitude flexibility, the required energy storage steadily decreases. Since the plane is allowed to fly higher, it uses the 

Fig. 17 Battery Energy on Winter Solstice (37° N) 



 

solar energy available in the day to gain altitude. This allows for more room to descend in the night and thus less 

energy needs to be stored in the battery. For Case 2, the objective function values match what one would expect, as 

on the spring and fall equinox there is similar amount of sunlight. The summer solstice has maximum sunlight, so 

minimal energy needs to be stored in the battery. In contrast, for the winter solstice the greatest amount of energy 

needs to be stored. Figure 18 shows that a higher percentage of solar power is used on the winter solstice than on the 

default day (Fig. 10). Case 3 shows the effect of latitude. The battery energy storage needed is lower in San 

Francisco because the default case is the 180th day of the year; therefore, solar flux availability drops as we move 

south to the equator. For Case 4, the objective function is larger when the panel efficiency drops to 22 % (same as 

Solar Impulse [5]). Cases 5 and 6 show predictably that as payload increases or battery efficiency reduces, the 

needed energy storage increases. The battery efficiency study shows a reasonable safety margin, allowing for battery 

degradation from the default case. 

Investigation of Limiting Cases: Results and Methods 

I also established the zone of feasibility for continuous operation of the solar aircraft. Since the availability of 

solar power is the most important factor, I studied cases on the winter solstice in the northern hemisphere, and found 

that the maximum latitude at which the plane can fly continuously is 47.5° N, at which the required minimum 

battery capacity is 24918 kJ. All other parameters were kept fixed as per the default case shown in Table 1. Figure 

19 compares the solar power available to the solar power used at latitude 47.5° N. Comparing this to the graph at 

latitude 37° N (Fig. 18), we can see that the graphs of the power available and the power used almost completely 

overlap in Fig. 19, as the plane is using nearly all of the solar power available for both propulsion and storing energy 

for use at night. At latitudes higher than 47.5° N, solar power is insufficient to sustain continuous flight. Thus, on 

the winter solstice, this airplane would not be able to fly above Seattle, Washington. Regarding solar panel 

Fig. 18 Power Use at Lat 37° N - Winter Solstice Fig. 19 Power Use at Lat 47.5° N - Winter Solstice 



 

efficiency, even at an efficiency as low as 14% with all other parameters kept fixed as per the default case, the 

airplane could remain in the air continuously on the winter solstice at 37° N, thus enabling use of cheaper solar 

panels. 

Initially, the feasible region studies were conducted by simply changing one parameter, such as the latitude, 

until the model failed to converge due to insufficient solar power. However, this approach, although successful in 

my case, can be unreliable. This is because we cannot be certain whether it failed to converge due to truly 

insufficient solar power or due to solver deficiencies. To improve the reliability of this study, an alternate method 

was created by adding an ‘artificial sun' which can provide a power source 𝑃𝑎𝑠𝑢𝑛 to the plane. Constraints 41 and 43 

are modified to add 𝑃𝑎𝑠𝑢𝑛 to the right hand side and the objective function is modified to add the power used from 

this artificial sun with a large weighting factor as shown in equation 53 below: 

𝑍𝑜𝑏𝑗 = 𝐸𝑏𝑎𝑡(𝑡𝑠𝑢𝑛𝑠𝑒𝑡) + 1000𝑃𝑎𝑠𝑢𝑛 (53) 

I determined through trials that a weighting factor of 1000 was sufficient to force the solver to not use this 

artificial sun unless it is absolutely necessary to ensure feasibility. Besides improving reliability, the other advantage 

is that by examining how much power from the artificial sun the airplane used, the power deficit beyond the 

boundaries of feasible operation can be determined. 

Computational Results 

The simultaneous method I implemented proved robust and computationally efficient for the optimization. All 

the cases described above were solved with ease, 

especially due to the utilization of the 2-solve strategy that 

was developed after the tests on the HG-2 glider model. 

Without the 2-solve method, computation times tend to be 

substantially higher, and in some cases the model fails to 

converge. The computational performance of the solar 

aircraft model is reported in Fig. 20. As the number of 

finite elements increases, the degrees of freedom and 

nonlinear non-zeroes increase; however, even for 500 finite elements the computation time is only about 26 seconds. 

Low computation time is important for the applicability of my method to larger models and allows for quick 

readjustment of the trajectory should disturbances occur.  

Fig. 20 Computation Time vs. Finite Elements 



 

Conclusions and Future Work 

The solution method I implemented for solving optimal control problems has proven to be robust and 

computationally efficient. Tests on the glider model were used to tune the algorithm for better performance. The 

interesting finding of the ‘mad-dash’ for the glider model range optimization demonstrated the method’s ability to 

find opportunities to increase flight range. Furthermore, the complex solar aircraft optimization runs, in which four 

control profiles are optimized, take less than 30 seconds for most cases. The robustness and speed of execution that I 

aimed for were achieved, especially with the 2-solve initialization strategy. By using the simultaneous integration 

and optimization method, the drawbacks of repeated integration of the differential equations are avoided.  

The solar aircraft optimization model formulated is also the first comprehensive model that can be used in two 

ways. In the first step, the model can be used to determine the minimum battery capacity needed before launch. 

Following the launch, the model can perform as a control system to ensure that the flight stays on the optimal 

trajectory for continuous flight. I hope that this model will be used by future researchers to test their solution 

methods.   

There is much more work that needs to be done. On the solver side, the effect of non-linearities on robustness 

needs to be further investigated. Performance studies of the simultaneous method on trajectory optimization 

problems involving planetary missions should be done to see how the method could be adapted for space flight. The 

solar airplane model must be enhanced by accounting for environmental factors such as clouds, rain, wind, and 

humidity. Regarding multiple solutions, the effect of additional constraints and limits on the control variable profiles 

must be evaluated. The current model is computationally efficient, but allows for limited motion about the launch 

point. This is not a major problem since the plane rarely reaches speeds above 50 km/h. However, the effect of the 

earth’s rotation on the cycle time as well as Coriolis force effects and solar flux changes for more extensive north-

south motion should be considered if the range of motion is expected to be wide. The effect of the tilt of the solar 

panel on the solar flux should also be considered in future work, as this could be a factor in take-off and landing. 

Furthermore, it is also important to consider better battery power output models in future work. I have recently 

joined a team of Stanford graduate students to design and build a small solar aircraft using the optimization method 

and plan to further improve the model and the solution algorithm in the process. I hope this project will help us 

evaluate the opportunities and practical limitations of continuous solar flight. 
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